Tuesday, Sep 25 2018 | Updated at 01:41 AM EDT

Stay Connected With Us F T R

Apr 21, 2017 01:15 PM EDT

Columbia University researchers were able to break the "color barrier" of light microscopy for biological systems. This is expected to lead to more comprehensive, system-wide labeling and imaging of a larger number of biomolecules in living cells and tissues.

This was previously unattainable and the progress has the potential to for several future applications. This may help guide the development of therapies to treat and cure disease.

The study has been published in the journal "Nature." The team of researchers was led by Wei Min, an associate professor of Chemistry at Columbia University.

Phys.org reported that the team has developed a new optical microscopy platform with enhanced detection sensitivity. The study also detailed the creation of new molecules that allow for simultaneous labeling and imaging of up to 24 specific biomolecules when paired with the new instrumentation.

Watch video

Min described their work as "new and unique" because it has two synergistic parts: instrumentation and molecules. These pieces work together to combat the color barrier.

Their platform can help bring more understanding of complex biological systems such as the human cell map, metabolic pathways, the functions of several structures within the brain and the macromolecule assembly, among others.

One example is fluorescence microscopy, which allows scientists to monitor cellular processes in living systems through proteins, is hindered by the color barrier. This limits researchers to seeing only five structures at a time.

There are also a variety of Raman microscopy techniques used for observing living cell and tissue structures that make the vibrations visible stemming from characteristic chemical bonds in structures. Traditional Raman microscopy is able to produce highly-defined colors that fluorescence microscopy.

The researchers were able to develop a new platform called electronic pre-resonance stimulated Raman scattering (epr-SRS) microscopy that brings a high level of sensitivity and selectivity. The technique specifically identifies structures with lower concentration instead of millions of the same structure.

See Now: Facebook will use AI to detect users with suicidal thoughts and prevent suicide

Follows Microscope, Columbia University, Method, Color Barrier, Microscopy, science, chemistry
© 2017 University Herald, All rights reserved. Do not reproduce without permission.

Must Read

Controlling Robots With Brainwaves And Hand Gestures

Jun 23, 2018 AM EDTWhat if you can control robots with a simple flick of a finger? A team of experts is trying to make that a reality through this latest experiment.

Flavored Electronic Cigarettes Linked To Possible Cardiovascular Disease

Jun 16, 2018 AM EDTScientists from the Boston University School of Medicine looked into the effects of flavored e-cigarettes to the lining of blood vessels. Here are ...

LendingTree Study: Which Places Have the Most Student Debt?

May 31, 2018 AM EDTLendingTree outs its study that identifies places in the United States with the most student debt. Here's the complete list.

Best College Reviews Names 10 Best Master's in Biomedical Engineering Programs Online

May 31, 2018 AM EDTPlanning to pursue a master's degree in Biomedical Engineering? Here are some of the best online programs you need to consider.