Saturday, Mar 24 2018 | Updated at 07:24 PM EDT

Stay Connected With Us F T R

Apr 27, 2017 12:20 PM EDT

Engineers at the Massachusetts Institute of Technology (MIT) have created a system that could make it possible to control how water moves over a surface by using only light. This could pave the way for advanced technologies like reprogramming microfluidic diagnostic devices or field systems that can separate water from oil at a drilling rig.

The system has been reported in the journal "Nature Communications." It was developed by Kripa Varanasi, MIT associate professor of mechanical engineering, Gareth McKinley, School of Engineering Professor of Teaching Innovation, Gibum Kwon, former postdoc, Divya Panchanathan, graduate student, Seyed Mahmoudi, former research scientist, and Mohammed Gondal at the King Fahd University of Petroleum and Minerals in Saudi Arabia.

Initially, the project's goal was to find ways of separating oil from water. One example was to treat the frothy mixture of briny water and crude oil produced from specific oil wells since the more thoroughly these mixtures are combined, the harder they are to separate.

Others use electrostatic methods but these are energy-intensive and are not effective when the water is highly saline. Instead, the team shifted the focus on the use of "photoresponsive" surfaces, whose responses to water can be modified by exposure to light.

They created surfaces whose interactions with water could be activated by light. This property is known as "wettability."

The researchers found that they are able to directly separate the oil from the water by causing individual droplets of water to coalesce and spread across the surface. With this, the more that these water droplets fuse together, the more they separate from the oil.

An example of photoresponsive materials is titanium dioxide, also known as titania. It is the active ingredient in most sunscreens. These materials primarily respond to ultraviolet light, though.

The team used a layer-by-layer deposition technique to build up a film of polymer-bound titania particles on a layer of glass. Afterwards, they dip-coated the material using a simple, organic dye.

This resulted to a surface that was highly responsive to visible light and produced a change in wettability when it was exposed to sunlight. The material was found to be very effective at separating the oil and water.

Follows science, MIT, Massachusetts Institute of Technology, engineering, water, light, manipulation, physics
© 2017 University Herald, All rights reserved. Do not reproduce without permission.

Must Read

Here is NASA’s Take On Anonymous Hackers Alien Claims [VIDEO]

Jun 28, 2017 AM EDTNASA official says no alien has been found until today.

International Cyber Attack Strikes Again: Ransomware Hits Companies Worldwide [VIDEO]

Jun 28, 2017 AM EDTOver 2,000 computers in about a dozen countries were affected.

The Magic of Celebrity Involvement: How Projects and Concepts Get Public Nod When Icons Get Involved [VIDEO]

Jun 28, 2017 AM EDTDo celebrities really affect marketing?

Student Loans In Focus: How Much Do Students Really Borrow To Attend The Top 10 Schools [VIDEO]

Jun 26, 2017 AM EDTFor most students, going into the Top 10 schools is a dream come true. But is the expense in studying in these schools worth it?