Tuesday, Mar 20 2018 | Updated at 05:05 PM EDT

Stay Connected With Us F T R

Mar 16, 2017 11:30 AM EDT

Since lithium-ion batteries were invented and Sony commercialized it in 1991, it has powered almost everything here on Earth from cellphones to Mars rovers. In essence, li-on batteries are what control the world. However, when the Samsung Galaxy Note 7 and hover board fiasco occurred, li-on batteries found themselves in bad light souring the decades long romance with tech devices. What really is inside the li-on battery which makes it like a ticking time bomb?

Lithium-ion batteries are basically made up of five main "ingredients" - lithium cobalt oxide, graphite, polypropylene, ethylene carbonate, and lithium hexafluorophosphate. Here's how each of these ingredients function inside the li-on battery.

Lithium Cobalt Oxide and Graphite

Lithium cobalt oxide and graphite are the two electrodes responsible for storing and releasing energy in Li-on batteries. Lithium ions bounce back and forth between these two electrodes in some sort of a give and take relationship. Electrons from the outlet 'tempt' ions from the lithium cobalt oxide to come out and transfer to the graphite electrodes where they then wait to be released along with the energy that produces electricity.

The lithium electrode is made up of cobalt and oxygen which merge to become strong and thick layers of octahedrons. They act as a protection for molecules and keep them from crumbling as ions pass back and forth. However, these structures can collapse and explode in very high temperatures.

Graphite, on the other hand, is pure carbon. This is the same graphite used in pencils. Although graphite is non-flammable, it is combustible.


Although graphite and lithium cobalt oxide engage in a give and take relationship, theirs is like Romeo and Juliet as well - they cannot be together, all the more touch is other. When they touch each other, that's when combustion happens causing the li-on battery to explode.

That's where polypropylene comes in - it has to make sure these two don't touch each other. Aside from separating the two electrodes, the tiny holes that perforate this thin, plastic act as the portal where ions can pass back and forth.

Faulty polypropylene can cause the electrodes to touch each other generating too much heat and pressure. This heat can go up to as high as 1,700 degrees Fahrenheit igniting the flammable parts inside the battery.

Ethylene Carbonate

This clear, organic solvent is the flammable substance in li-on batteries. They are responsible for transporting the ions between the electrodes. If the battery malfunctions, the hot liquid can seep out of the battery and when it comes in contact with oxygen, it will explode.

Lithium Hexafluorophosphate

This powdery substance speeds up the charging and discharging process of the li-on battery. It's non-flammable but it can burn the skin.

Follows Li-On Battery, Lithium-Ion battery, Exploding Samsung Galaxy Note 7, Samsung Galaxy Note 7
© 2017 University Herald, All rights reserved. Do not reproduce without permission.

Must Read

Here is NASA’s Take On Anonymous Hackers Alien Claims [VIDEO]

Jun 28, 2017 AM EDTNASA official says no alien has been found until today.

International Cyber Attack Strikes Again: Ransomware Hits Companies Worldwide [VIDEO]

Jun 28, 2017 AM EDTOver 2,000 computers in about a dozen countries were affected.

The Magic of Celebrity Involvement: How Projects and Concepts Get Public Nod When Icons Get Involved [VIDEO]

Jun 28, 2017 AM EDTDo celebrities really affect marketing?

Student Loans In Focus: How Much Do Students Really Borrow To Attend The Top 10 Schools [VIDEO]

Jun 26, 2017 AM EDTFor most students, going into the Top 10 schools is a dream come true. But is the expense in studying in these schools worth it?